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Abstract—Traditional blind image quality assessment (IQA)
measures generally predict quality from a sole distorted image
directly. In this paper, we first introduce multiple pseudo refer-
ence images (MPRISs) by further degrading the distorted image in
several ways and to certain degrees, and then compare the simi-
larities between the distorted image and the MPRIs. Via such
distortion aggravation, we can have some references to com-
pare with, i.e., the MPRIs, and utilize the full-reference IQA
framework to compute the quality. Specifically, we apply four
types and five levels of distortion aggravation to deal with the
commonly encountered distortions. Local binary pattern features
are extracted to describe the similarities between the distorted
image and the MPRIs. The similarity scores are then utilized to
estimate the overall quality. More similar to a specific pseudo ref-
erence image (PRI) indicates closer quality to this PRI. Owning
to the availability of the created multiple PRIs, we can reduce
the influence of image content, and infer the image quality more
accurately and consistently. Validation is conducted on four main-
stream natural scene image and screen content image quality
assessment databases, and the proposed method is comparable
to or outperforms the state-of-the-art blind IQA measures. The
MATLAB source code of the proposed measure will be publicly
available.

Index Terms—Blind image quality assessment, distortion
aggravation, pseudo reference image.

I. INTRODUCTION

HE QUICK development of network and transmission
Ttechnologies have boosted various multimedia applica-
tions and broadcasting services [1], [2]. With so many easily
accessible multimedia services, end-users are expecting bet-
ter and better quality of experience (QoE) from the service
provider. Then how to measure and improve the end-user’s
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perceived QoE becomes a urgent problem for both device man-
ufacturer and service provider, and many methods have been
proposed to measure and enhance the perceived QoE [3]-[7].
Measuring QoE has aroused increasing attention in recent
years, such as QoE evaluation of images and videos [8]-[13].
Among them, blind image quality assessment (IQA) has
attracted much interest since it requires no prior knowledge
of the original image content and the distortion process, and
it can be easily deployed in practical visual communication
systems.

Blind or no-reference (NR) IQA is originated from full-
reference (FR) IQA, in which the perfect quality reference
image is the foundation and the fidelity between it and the
distorted image is calculated to measure the quality [14]. FR
IQA is reduced to NR IQA to tackle the situation that the
reference image may not exist or easy to access. Typically,
natural scene statistics (NSS) is modeled, and the distorted
image’s deviation from the NSS is measured as the quality.
Generally, NR IQA measures can be less effective, stable and
consistent, since they have to estimate the quality from the sole
distorted image, whose characteristics are highly sensitive to
the image content. Thus FR IQA measures are preferred if the
reference is available.

To have an intuitive understanding of the
phenomenon, we select six NR measures, includ-
ing DIIVINE [15], BLIINDS2 [16], BRISQUE [17],
NFERM [18], IL-NIQE [19], BPRI [20], and six FR
measures, including SSIM [21], MS-SSIM [22], VIF [23],
GSI [24], FSIM [25], GMSD [26], PSIM [14]. We test their
performance on 10% randomly selected commonly distorted
(JPEG compression, JPEG2000 compression, Gaussian blur,
and white Gaussian noise distortions) images from the
TID2013 database [27]. This process is executed for 1,000
times, and the mean performance and standard deviation in
terms of Spearman rank-order correlation coefficient (SRCC)
are illustrated in Fig. 1. It is observed that FR measures
generally have higher performance and lower performance
uncertainty (smaller standard deviation) than NR measures,
which agrees with the above analyses. Note that the above
NR measures are well-trained. If we retrain them using the
rest images and test them using the selected images, the
uncertainty can be even higher.

Considering the benefits of using the reference, we intro-
duce multiple pseudo reference images (MPRIs) for NR IQA
via distortion aggravation. The MPRIs are degraded from the
distorted image in several ways and to certain degrees. The
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Fig. 1. A comparison of the performance and performance uncertainty of
quality measures with and without a reference. The error bar indicates one
standard deviation.

pseudo reference image (PRI) is different from the traditional
reference image in that it is generated from the distorted image
and is assumed to suffer from severer but certain amount of
distortion, while the traditional reference image is assumed to
have a perfect quality. A systematic introduction of PRI has
been given in [20]. We extend PRI to MPRIs in this paper.
After distortion aggravation and MPRIs generation, we follow
the FR IQA framework and compare the similarities between
the distorted image and the MPRIs. More similar to a specific
PRI indicates closer quality to this PRI

We introduce several types of distortion aggravation during
MPRIs generation to measure the possible distortions exist-
ing in the target image. Specifically, we further degrade the
distorted image using four types of commonly encountered
distortions, including JPEG compression (JPEG), JPEG2000
compression (JP2K), Gaussian blur (GB), and white Gaussian
noise (WN), to measure the blocking, ringing, blurring, and
noising artifacts. For each type of distortion aggravation, five
different but certain levels of distortion is added. A total of
twenty PRIs are generated to give references of the same
image content degraded by different distortions. Similar to FR
IQA, features are then extracted from the distorted image and
the PRIs, and the similarities between them are measured as
distortion-specific (the same distortion which is used to gen-
erate the corresponding PRI) qualities, which are finally fused
to an overall general-purpose quality. We name the proposed
method as blind MPRIs-based (BMPRI) measure.

The rest of this paper is organized as follows. In Section II,
we shortly review some related work, including representa-
tive blind IQA measures, and several works which follow a
similar technique routine as the proposed method. The details
of the proposed BMPRI measure are described in Section III.
Validation is given in Section IV, which shows that BMPRI
is comparable to or outperforms the state-of-the-art blind IQA
measures. Section V concludes this paper.

II. RELATED WORK
A. Blind IQA Measures

One typical category of blind IQA measures rely on
NSS [15]-[17], [19], [28]. These measures follow the
same technique routine. First the quality-aware features are
extracted in various domains, e.g., wavelet domain [15], DCT
domain [16], and spatial domain [17], [19], [28]. Then the
statistics of the features extracted from both perfect quality
natural images and the distorted image are modeled, respec-
tively. Finally the quality is computed as the distorted image’s
deviation from natural scenes, and the deviation is described
via the modeled statistics. Another typical category of blind
IQA measures utilize machine learning techniques, e.g., fea-
ture learning [29], [30] and rank learning [31]. Depending on
the specific learning techniques, these measures predict quality
from the learned or manually extracted quality-aware features.
The last typical category of blind IQA measures are moti-
vated by some characteristics of the HVS, e.g., the free energy
principle [18], [32], human visual perception of image struc-
tures [33], [34]. Some features are designed to simulate these
characteristics and these features are then fused to the final
quality.

B. Blind IQA via Distortion Aggravation

All the above blind IQA measures predict quality from
single distorted images. A few measures have tried to intro-
duce a “reference” for the distorted image in a NR scenario.
Crete et al. [35] and Li et al. [36] proposed blur quality mea-
sures by comparing a blurred image and the re-blurred image.
The re-blurring is a distortion aggravation process, and the re-
blurred image acts a similar role as the PRI described in this
paper, but these two measures can only work for blur estima-
tion. Min et al. [20], [37] discussed blind IQA via distortion
aggravation systematically, and proposed several PRI-based
distortion-specific measures, which are then integrated into
a general-purpose measure. In this paper, we improve the
method described in [20] from two aspects. First, we generate
a series of PRIs with different qualities, rather than one PRI
with the worst quality. Second, we unify the feature extraction
process and describe all distortions via LBP features, while
different features are extracted for different distortions in [20].
With multiple PRIs and a unified feature extraction process,
the proposed BMPRI measure can estimate image quality more
accurately and consistently. More details of BMPRI are given
in the next section.

III. THE PROPOSED METHOD

As described in Section I, we further degrade the distorted
image to generate MPRIs, and then measure the similarity
between them to predict the quality. Fig. 2 illustrates a frame-
work of the proposed BMPRI measure. Distortion aggravation
is introduced in this framework, and we first need to determine
the distortion types for this distortion aggravation. Since dif-
ferent distortion types introduce different artifacts, we need to
define distortion-specific PRI to be consistent with the char-
acteristics of a given distortion. For example, we can inject
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Fig. 2.

q1 to qn indicate the distorted image’s similarities to the PRIs, the final quality Q is fused from g to gj.

noise to the distorted image to estimate the noising artifacts,
and similarly we can blur the distorted image to estimate the
blurring artifacts. Considering that JPEG, JP2K, GB, and WN
are the four most commonly encountered distortion types, we
further degrade the distorted image using these four distortion
types to measure the blocking, ringing, blurring, and noising
artifacts. For different types of distortion aggravation, local
binary pattern (LBP) features are extracted, and the similari-
ties between the distorted image and MPRIs are used to predict
the final quality. The details are as follows.

A. Distortion Aggravation

Four types of distortion aggravation are introduced in
BMPRI, and for each type, five levels of aggravation are used.
To measure the blocking effect, we compress the distorted
image D to MPRIs Py, using the JPEG encoder

Py, = JPEG(D, i), (D

where i indicates the ith level of distortion aggravation, JPEG
denotes the JPEG encoder, and Q; controls the compression
quality. For the ringing effect, we compress the distorted image
D to MPRIs P,; using the JP2K encoder

P, = JP2K(D, R)), )

JP2K denotes the JP2K encoder, and R; controls the compres-
sion ratio. For blurring effect, we blur the distorted image D
to MPRIs Py, using several Gaussian kernels

Py, =gi*D, 3)

where * is a convolution operator, and g; is a Gaussian kernel
with certain standard deviation. For noising effect, we inject
noise to the distorted image D to get MPRIs P,

P, =D+ N(0,v)), “)

where A(0,v) generates normally distributed random values
with 0 mean and v; variance. In Eq. (1)-Eq. (4), the subscripts

k,r,b,n indicate blocking, ringing, blurring, and noising
effects, respectively, and five levels of distortion aggravation
are introduced for each type, i.e,, i=1,...,5.

B. LBP Feature Extraction

After distortion aggravation, we compare the similarities
between the distorted image and the MPRIs. Note that the
PRI is different from the traditional perfect quality reference
image. PRI generally has worse quality than the distorted
image and it describes the image content under poor qual-
ity conditions. Thus traditional FR IQA measures may not be
effective enough to describe the similarities between the dis-
torted image and the MPRIs. In this paper, we extract LBP
features from the distorted image and the MPRIs, and then
measure the feature similarity to predict the quality. LBP is a
simple yet powerful visual descriptor widely used in various
visual signal processing applications [38]. Quality degrada-
tions cause local image structure changes, which can be also
captured by LBP.

We compare the center pixel g, and its circularly sym-
metric neighborhoods g,, and then binarize their luminance
differences and code the binarization results via a numerical
value

P—1
LBPpr = Y u(gp — 8c), 5)
p=0
where P, R denote the neighbour number and radius of the
LBP structure, u(*) is an unit step function

1 >0
”(x):{o (20

The LBP used in our method is different from the non-uniform
and uniform definitions given in [38]. We do not differentiate
the neighborhoods by attaching a factor 27, and do not code
the LBP with many spatial transitions as a separate number for

(6)
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JPEG L3, MOS=1.9, dkg =1.00

GB L1, MOS=5.5, Abg =0.67 GB L2, MOS=4.1, qb=0.

JP2K L1, MOS=6.1, -5 =

WN LI, MOS=5.5, dng =0.36 WN L2, MOS=4.5, Ang =0.39 WN L3, MOS=3.5, dng =0.42

Fig. 3. The overlap between the distorted image’s and the MPRI’s LBP feature maps for images with different distortion types (JPEG, JP2K, GB, WN) and
levels (three levels L1-L3). 1st and 3rd rows: distorted images; 2nd and 4th rows: the corresponding L, maps; MOS: mean opinion score; gk, qry» qby» qn3:

the similarity scores. More overlap is observed in more distorted images.

simplicity. We set P = 4 and R = 1 for simplicity since it is
the simplest one and does not involve any pixel interpolation.

We calculate LBP for all pixels and define the LBP feature
map as L = (l;j)nxw, whose elements are

1
l,;,:{o

where i, j are pixel indexes, i x w denotes the image reso-
lution, and ¢ = 0, 1, ..., 4 indicate five different LBPs. We
set ¢ to different values for different distortion types, since
specific LBPs are sensitive to specific distortions. For the
distorted image and the MPRIs, we follow the same feature
extraction process, and denote the feature maps as L, and LL
respectively.

if LBP4; =¢
otherwise

. (7

m?

C. Similarities Between the Distorted Image and the MPRIs

We then compare the similarity between L, = (/,;})xw and
L, = (l,ij)hxw to predict the quality. Specifically, we define
the overlap between L, and L, as

Lo = (loij)hXW = (8)

Fig. 3 has illustrated some examples of L, map. Then the
similarity between L, and L, can be defined as
Zi J lo’/
g=sL,,L,))==—"—",

( ¢ ) Zi,j lm’/ +1
where the numerator and denominator denote the number of
non-zero elements in L, and L, maps, respectively. High
q score generally indicates worse quality since the MPRIs

(ldlj : lmij)hxw’

€))

describe the image content under poor quality conditions. We
utilize an average pooling strategy here, but BMPRI may be
improved by incorporating visual attention [39]-[41].

D. Quality Prediction

When measuring the blocking effect, we set ¢ to 0 and
use Eq. (5)-Eq. (9) to compute the similarities between the
distorted image D and the MPRIs Py, as g,. We set ¢ to 0
because this pattern is the most sensitive to the blocking dis-
tortion, and g changes the most significantly with the varying
blocking effect of the distorted image. Similarly, we set ¢ to
2 or 3 to estimate the ringing and blurring effects as ¢,, and
qp,;» and set ¢ to 0 or 1 to estimate the noising effect as g,,;. In
Fig. 3, we have illustrated some examples of LBP feature sim-
ilarity maps, the corresponding similarity scores and the mean
opinion scores (MOSs). It is observed that the LBP similarity
scores have good describing ability for the corresponding dis-
tortions, and there is more overlap in more distorted images.
We catenate all similarity scores into a twenty dimensional
feature vector
s Gks> Gris s Qrs> Gbys - -

,C]b5, Clnl, --~7Qn5]-

(10)

q=[qk1,...

Feature vector q contains features describing the distorted
image’s blocking, ringing, blurring, and noising effects, which
are the four most frequently encountered artifacts and many
practical distortions can be combinations of them. Since dis-
tortions in practical applications are often uncertain and the
portions of these four distortion effects are also unknown, we
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integrate the features in vector q into the final quality score
Q via training. Specifically, support vector regression (SVR)
is utilized considering its simplicity and high efficiency in
regression problems. We use the quality features f; and the
corresponding quality labels Q; (MOS) of the images in the
training set ® to train the regressor

regressor = SVR_TRAIN(;, Q;), i € O, (11
where i is the image index. After training, we can use the
regressor to predict the quality of any test image with quality
feature f

O = SVR_PREDICT({, regressor). (12)

We use the LIBSVM [42] implementation of the SVR with
a radial basis function (RBF) kernel. We follow the common
SVR parameter settings used in the training of mainstream
IQA measures. After training, it can predict the quality of any
single images.

E. Implementation Details

When apply distortion aggravation, we need to further
degrade the distorted image using JPEG, JP2K, GB, and WN
distortions, and five degradation levels are used for each type.
In Eq. (1), we use the MATLAB implementation of JPEG
encoder, and the five quality parameters are from 0 to 8 with
a step of 2. In Eq. (2), the five compression ratios are from 150
to 250 with a step of 25. In Eq. (3), five Gaussian kernels with
standard deviations from 0.5 to 2.5 with a step of 0.5 are used.
In Eq. (4), the five variances are from 0.3 to 0.7 with a step
of 0.1. Note that the twenty PRIs have described the image
content with poor quality conditions, and they generally have
worse quality than the distorted image. We find that the spe-
cific quality settings of these PRIs do not influence the overall
performance significantly as long as they are in a relative low
quality range.

IV. EXPERIMENTAL RESULTS

Most current IQA measures are designed for natural scene
images (NSIs). Since the computer generated screen con-
tent has becoming more and more widespread, screen content
image (SCI) quality assessment (QA) is introduced and a
few quality measures have been proposed for SCIs [43]-[45].
Traditional NSI quality measures are not effective enough for
SCIs, since these measures are highly dependent on NSS and
can not describe SCIs well. While specifically designed SCI
quality measures have to consider the characteristics of SCIs,
and they are not suitable for NSIs. However, in practical visual
communication systems, we may encounter both NSIs and
SClIs, and we often do not have any prior knowledge about
the image types. Efficient general quality measures which are
effective for both NSIs and SCIs are highly needed in such
applications. The proposed method can fulfill this need and we
will compare it with the state-of-the-art blind IQA measures
on mainstream NSI and SCI QA databases.
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TABLE I
TEST DATABASES

Type Name No. of Ref.  No. of Dist. ~ Score Type
LIVE [46] 29 779 DMOS

NSI  TID2013 [27] 25 480 MOS
CSIQ [47] 30 600 DMOS

SCI SIQAD [48] 20 560 DMOS

A. Experimental Protocol

Four large IQA databases are used as testbeds, includ-
ing three mainstream NSI QA databases, i.e., LIVE [46],
TID2013 [27], CSIQ [47], and one SCI QA database, i.c.,
SIQAD [48]. The whole LIVE database is used for test,
while for the TID2013, CSIQ, and SIQAD databases, we
mainly consider the four distortion types which are in com-
mon with the LIVE database, i.e., JPEG, JP2K, GB, and WN.
An overview of the basic information of the test databases
is given in Table 1. Besides these common distortions, we
will also test the quality measures’ generalizability to other
non-common distortions.

Ten state-of-the-art blind IQA measures act as com-
petitors in this paper, including: (1) NSS based mea-
sures, i.e., DIIVINE [15], BLIINDS2 [16], BRISQUE [17],
NIQE [28], and ILNIQE [19]; (2) learning based measures,
i.e., CORNIA [29] and HOSA [30]; (3) human vision based
and some other measures, i.e., NFERM [18], LPSI [33], and
BPRI [20]. The competitors include both classical and recent
measures, and they follow various different technical routines.
We think these measures can represent the state-of-the-art in
this area.

Following the common practices of IQA model evaluation,
we first nonlinearly map the predicted scores using a five-
parameter logistic function

/ 1 1
0 =ﬂ1<§—m)+ﬂ4Q+ﬂ5,

where Q, Q' are the predicted and mapped quality scores,
respectively; {Bili = 1,2,...,5} are parameters determined
via curve fitting. Then the consistency between the predicted
and ground-truth quality scores is measured to evaluate the
IQA model. Specifically, we use the following three con-
sistency metrics: Spearman rank-order correlation coefficient
(SRCC), Pearson linear correlation coefficient (PLCC), and
root-mean-square error (RMSE), which measure the prediction
monotonicity, linearity, and accuracy, respectively.

13)

B. Overall Performance Comparison

Following the common practices of training based IQA
model evaluation [15]-[18], we split the image database into
two completely separate sets: a training set with 80% distorted
images and a testing set with the rest 20% distorted images.
The distorted images corresponding to the same reference
image are assigned to the same set to ensure a complete sepa-
ration of the training and testing image content. For DIIVINE,
BLIINDS-II, BRISQUE, NFERM, and the proposed method,
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TABLE 1T
OVERALL MEDIAN SRCC, PLCC, AND RMSE PERFORMANCE COMPARISON

Database  Criteria DIIVINE  BLIINDS2 BRISQUE NIQE ILNIQE CORNIA HOSA NFERM LPSI BPRI  BMPRI
SRCC 0.8729 0.9109 0.9390 0.9102 0.9046 - - 0.9352 0.8199 09047  0.9310

LIVE PLCC 0.8828 0.9250 0.9439 0.9088 0.9068 - - 0.9401 0.8323  0.9059 0.9329
RMSE 12.837 10.297 9.0156 11.382 11.512 - - 9.2892 15.096  6.2055  9.8335

SRCC 0.7498 0.8580 0.8542 0.8111 0.8777 0.8938 0.9021 0.9078 0.7156  0.8991  0.9287

TID2013 PLCC 0.7989 0.8957 0.8883 0.8243 0.8930 0.9067 0.9223 0.9308 0.8258  0.8917  0.9466
RMSE 0.8379 0.6215 0.6430 0.7888 0.6282 0.5901 0.5409 0.5100 0.7901  0.6320  0.4488

SRCC 0.8573 0.8917 0.8699 0.8837 0.8867 - - 0.9140 0.7772  0.9034  0.9085

CSIQ PLCC 0.8946 0.9221 0.8991 0.9050 0.9190 - - 0.9434 0.8742 09251  0.9339
RMSE 0.1258 0.1087 0.1240 0.1177 0.1082 - - 0.0932 0.1354  0.1071  0.0989

SRCC 0.7203 0.7278 0.7071 0.4982 0.5446 0.5267 0.3852 0.7647 04288 0.7825  0.7717

SIQAD PLCC 0.7536 0.7766 0.7588 0.5433 0.6041 0.5560 0.4556 0.8049 0.5406  0.8092  0.8129
RMSE 9.1101 8.8384 9.0712 11.583 11.055 11.447 12.328 8.2414 11.672  8.1668  8.0417

Average SRCC 0.8001 0.8491 0.8425 0.7758 0.8034 0.7976 0.7620 0.8804 0.6854 0.8724  0.8850
PLCC 0.8325 0.8798 0.8725 0.7953 0.8307 0.8118 0.7924 0.9048 0.7682  0.8830  0.9066

#Hit 0 0 3 0 0 0 0 3 0 1 7
TABLE III
MEDIAN SRCC PERFORMANCE COMPARISON ON INDIVIDUAL DISTORTIONS

Database  Criteria DIIVINE  BLIINDS2 BRISQUE NIQE ILNIQE CORNIA HOSA NFERM LPSI BPRI BMPRI
JPEG 0.8854 0.9458 0.9646 0.9436 0.9461 - - 0.9647 0.9668 0.9677  0.9668

JP2K 0.8193 0.9325 0.9128 0.9265 0.9036 - - 0.9371 0.9372 09195  0.9393

LIVE GB 0.8714 0.9083 0.9504 0.9408 0.9293 - - 0.9132 0.9266  0.9348 09181
WN 0.9591 0.9444 0.9791 0.9711 0.9795 - - 0.9844 0.9582  0.9835  0.9860

FF 0.8053 0.8527 0.8781 0.8643 0.8458 - - 0.8534 0.7820 0.8196  0.8269

JPEG 0.6892 0.8149 0.8312 0.8723 0.8738 0.9162 0.9179 0.8877 0.9246 09177  0.9262

TID2013 JP2K 0.7860 0.9062 0.8652 0.8991 0.9108 0.9031 0.9300 0.9106 0.9054  0.8853  0.9262
GB 0.8585 0.8922 0.8705 0.8199 0.8466 0.9346 0.9177 0.8923 0.8835 0.8712  0.9162

WN 0.6633 0.6762 0.8254 0.8530 0.8923 0.7815 0.8485 0.8946 0.8208  0.9334  0.9338

JPEG 0.8825 0.9035 0.9018 0.8830 0.9039 - - 0.9158 0.9539 09332 09181

CsIQ JP2K 0.8545 0.8903 0.8381 0.9240 0.9221 - - 0.9079 0.9226 0.8750  0.8999
GB 0.8751 0.9088 0.8913 0.9032 0.8688 - - 0.9292 09168 0.9075  0.9180

WN 0.8009 0.8657 0.9071 0.8325 0.8695 - - 0.9074 0.7244 09399  0.9275

JPEG 0.4792 0.4028 0.5419 0.5287 0.3651 0.1823 0.4691 0.6163 0.7737 0.7447  0.6180

SIQAD JP2K 0.5331 0.6527 0.3591 0.2909 0.4540 0.6500 0.5260 0.5041 0.5914  0.6593  0.6853
GB 0.8013 0.8177 0.8202 0.6212 0.5769 0.7334 0.2365 0.8922 0.7808 0.8539  0.8243

WN 0.7967 0.8615 0.8196 0.8473 0.8539 0.7567 0.7455 0.8333 0.8815 0.8730  0.8591

Average 0.7859 0.8339 0.8327 0.8189 0.8201 0.7322 0.6989 0.8673 0.8618 0.8835 0.8817

#Hit 0 0 2 0 0 1 1 2 4 3 5

we retrain them on the training set and test them on the test-
ing set. While for the rest methods, we test them on the same
testing set for fair comparison. We repeat this training-testing
process for 1,000 times, and the median SRCC, PLCC, and
RMSE performance is listed in Table II.

The databases listed in Table I are used as testbeds, and the
mean performance on these four databases is also reported.
Since CORNIA and HOSA are trained on the LIVE database
and the images from the CSIQ database are used to con-
struct the codebook, their performance on these two databases
is not reported in Table II. It is observed that the proposed
BMPRI method is comparable to the state-of-the-art blind IQA
measures, and it has the best performance from an averaging
perspective. Another observation is that most blind IQA mea-
sures undergo performance drop when transferring from NSIs
to SCIs. While BMPRI and BPRI are the two methods with

the least performance drop, which suggests that the proposed
method has good content type generalizability.

C. Performance on Single Distortions

Besides the overall performance on individual databases,
we also evaluate all blind IQA measures on individual dis-
tortions. The same training-testing procedures described in
Section IV-B are conducted. The 80% distorted images belong-
ing to the training set are all used to train the models, but
for the rest 20% distorted images belonging to the testing set,
only images degraded by the target distortion type are used for
testing. The median performance is listed in Table III. Only
SRCC is reported for simplicity, but similar evaluation results
can be obtained using other evaluation criteria. It is observed
that the proposed BMPRI measure is also comparable to the
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TABLE IV
SRCC PERFORMANCE ON SINGLE DISTORTIONS OF THE TID2013 DATABASE

Distortions DIIVINE  BLIINDS2 BRISQUE NIQE ILNIQE CORNIA HOSA NFERM LPSI BPRI  BMPRI
#01 0.8553 0.6468 0.8520 0.8187  0.8767 0.7354 0.8653 0.8581 0.7690 09181  0.8477
#02 0.7120 0.4762 0.7089 0.6701 0.8159 0.7076 0.7687 0.7096 0.4955 0.8587  0.7831
#03 0.4626 0.5862 0.4916 0.6659  0.9233 0.6892 0.5804 0.2184 0.6968  0.5293  0.5516
#04 0.6752 0.6183 0.5767 0.7464  0.5134 0.7141 0.7250 0.2210 0.0462  0.7479  0.8061
#05 0.8778 0.7229 0.7526 0.8454  0.8691 0.7972 0.8642 0.8813 0.9250 0.9263  0.8520
#06 0.8063 0.6525 0.6289 0.7446  0.7556 0.7634 0.7878 0.1728 0.4324  0.4585  0.3965
#07 0.1650 0.7370 0.7932 0.8514  0.8721 0.0922 0.7991 0.7747 0.8537  0.4898  0.7247
#08 0.8344 0.8367 0.8137 0.7986  0.8148 0.9274 0.9046 0.8501 0.8408 0.8593  0.8954
#09 0.7231 0.6884 0.5849 0.5900  0.7494 0.8459 0.0690 0.6389 0.2487  0.4210  0.4359
#10 0.6288 0.8360 0.8448 0.8468  0.8340 0.8958 0.9115 0.8722 09123  0.9107  0.9044
#11 0.8534 0.8883 0.8927 0.8890  0.8583 0.9009 0.9194 0.8097 0.8988  0.8680  0.9022
#12 0.2387 0.1098 0.3163 0.0006  0.2819 0.6991 0.7085 0.1322 0.0911  0.7887  0.5524
#13 0.0606 0.6409 0.3595 0.5114  0.5240 0.6762 0.3689 0.1684 0.6106  0.4883  0.4688
#14 0.0598 0.0997 0.1459 0.0682  0.0808 0.2332 0.3714 0.0646 0.0520 0.0086  0.0561
#15 0.0928 0.2440 0.2233 0.1218  0.1334 0.2287 0.2912 0.2020 0.1372  0.2333  0.1759
#16 0.0104 0.0963 0.1241 0.1639  0.1840 0.0844 0.0843 0.0213 0.3409 0.1106  0.2315
#17 0.4601 0.0011 0.0404 0.0171 0.0136 0.1814 0.1447 0.2178 0.1992  0.1846  0.0095
#18 0.0684 0.0119 0.1126 0.2481 0.1655 0.0353 0.0675 0.3067 0.3018 0.3786  0.3766
#19 0.7873 0.6193 0.7242 0.6934  0.6936 0.6574 0.7882 0.7162 0.6959 0.8612  0.7843
#20 0.1156 0.1663 0.0076 0.1544  0.3614 0.5235 0.3589 0.1427 0.0181  0.0691  0.3785
#21 0.6327 0.4552 0.6856 0.8023  0.8287 0.8654 0.8513 0.6541 0.2356  0.5977  0.7435
#22 0.4362 0.7677 0.7652 0.7881 0.7504 0.3919 0.7562 0.4790 0.8998  0.6753  0.7290
#23 0.6608 0.6445 0.6166 0.5671 0.6793 0.8183 0.6998 0.6430 0.6953  0.7253  0.7495
#24 0.8334 0.8257 0.7841 0.8340  0.8643 0.8536 0.7610 0.7847 0.8620 0.7873  0.7654

Average 0.5021 0.5155 0.5352 0.5599  0.6018 0.5966 0.6020 0.4808 0.5108 0.5790  0.5884
TABLE V

state-of-the-art methods when evaluated on single distortions,
which agrees with the overall performance evaluation results
described in Section IV-B.

D. Generalizability to Other Distortions

To test the blind IQA measures’ generalizability to other
distortions, we evaluate them on all 24 single distortions of
the entire TID2013 database, including #01 additive Gaussian
noise, #02 additive noise in color components, #03 spatially
correlated noise, #04 masked noise, #05 high frequency noise,
#06 impulse noise, #07 quantization noise, #08 Gaussian blur,
#09 image denoising, #10 JPEG compression, #11 JPEG2000
compression, #12 JPEG transmission errors, #13 JPEG2000
transmission errors, #14 non eccentricity pattern noise, #15
local block-wise distortions, #16 mean shift, #17 contrast
change, #18 change of color saturation, #19 multiplicative
Gaussian noise, #20 comfort noise, #21 lossy compression of
noisy images, #22 color quantization with dither, #23 chro-
matic aberrations, and #24 sparse sampling and reconstruction.

For all competitors, we use the original implementations
released by the authors. Most training based measures are well
trained on the LIVE database, and we use them directly. For
the proposed method, we also train it on the LIVE database
and test it on the TID2013 database. The SRCC performance
is summarized in Table IV. The proposed method is com-
parable to the state-of-the-art measures from an averaging
perspective. Note that the generalizability of the proposed
method is slightly inferior to the best performing measures
like ILNIQE, CORNIA and HOSA. It is probably because we
only introduce four types of distortion aggravation, i.e., the
four common distortion types, when deriving the MPRIs. For

COMPUTATIONAL COMPLEXITY

Method Time (seconds/image)
DIIVINE 8.0033
BLIINDS2 16.0604
BRISQUE 0.4493

NIQE 0.0964
ILNIQE 3.5990
CORNIA 2.9422
HOSA 0.2519
NFERM 19.3261
LPSI 0.0126
BPRI 0.7894
BMPRI 1.3965

other distortions which are distinctive from these distortions,
the proposed method may encounter slight generalizability
problems. But for such distortions, the state-of-the-art mea-
sures can not handle them effectively either, for example the
mean shift and contrast change distortions.

E. Computational Complexity

To analyse the computational complexity of all blind IQA
measures, we test them on 100 images with a fixed reso-
lution of 512 x 512, and report the average running time
(seconds/image). The experiment is conducted on a computer
with 4.20 GHz Intel Core i7-7700K CPU and 16 GB RAM.
We use the implementations released by the original authors.
The running time includes all feature extraction and regression
time, and the results are summarized in Table V. Though the
proposed method does not have the shortest running time, it
still has considerable low computational complexity. Note that



MIN et al.: BLIND IMAGE QUALITY ESTIMATION VIA DISTORTION AGGRAVATION

515

0.95

09 -

0.85 [

0.8 -

Performance

0.75

0.65

Fig. 4. Mean and standard error bar of the SRCC and PLCC values obtained from the 1,000 random tests on the TID2013 database.

we have not optimized and accelerated the code yet. The most
time consuming operations are the JPEG and JPEG2000 com-
pression introduced during distortion aggravation, while there
are many methods and solutions to accelerate such operations
in practical use.

F. Stability and Performance Uncertainty

As described in Section I and illustrated in Fig. 1, most blind
IQA measures are not stable since they have to estimate quality
from a single distorted image, whose characteristics are highly
sensitive to the image content. Similar to the test conducted in
Fig. 1, we test all blind IQA measures’ stability by evaluating
them on the four common distortions, i.e., JPEG, JP2K, GB,
and WN, which are included in the TID2013 database. We
randomly select 10% images from the overall 480 distorted
images, and test their performance. The image selection cri-
teria is similar to the image selection in the training-testing
process described in Section IV-B. This random selecting and
testing are executed for 1,000 times, and the mean performance
and standard deviation in terms of SRCC and PLCC are
illustrated in Fig. 4.

We have two observations. First, the proposed BMPRI
method shows the best performance, which agrees with the
previous validations given in Section IV-B. Second, BMPRI
has the smallest standard deviations in terms of both SRCC
and PLCC. It indicates that BMPRI is more stable and consis-
tent compared with the state-of-the-art. Most of current blind
IQA measures have high performance uncertainty because of
their NR nature. These measures rely on NSS, and they predict
quality by measuring one single image’s deviation from the
NSS. While a single image’s characteristics can be very sen-
sitive to the image content, thus these measures can be more
effective on some image content and less effective on some
other image content. As shown in Fig. 1, FR measures suffer
less from this problem since they mainly predict quality by
comparing two images, and the influence of image content

is reduced during such comparison process. The proposed
method inherits this merit since we also predict quality by
comparing image pairs using the FR IQA framework.

V. CONCLUSION

In this paper, we introduce the FR IQA framework into NR
IQA. Since the reference image is missing in the NR sce-
nario, we create MPRIs via distortion aggravation. We further
degrade the distorted image to the MPRIs in several ways and
to certain degrees. Then the MPRIs act as references, and we
measure the similarities between the distorted image and the
MPRIs. More similar to a specific PRI indicates closer quality
to this PRI. The similarity scores are then utilized to predict
the final quality. Specifically, we utilize four types and five lev-
els of distortion aggravation on the distorted image to generate
twenty PRIs, and LBP features are extracted to measure the
similarities between the distorted image and these twenty PRIs.
Experimental results on four large IQA databases have veri-
fied the effectiveness and efficiency of the proposed method.
On one hand, the proposed method is comparable to the state-
of-the-art blind IQA measures in terms of performance. On
the other hand, it is more stable and consistent than the state-
of-the-art, since we predict quality by comparing image pairs
and the influence of image content is significantly reduced via
such image comparison.

REFERENCES

[1] L. Jalal and M. Murroni, “Enhancing TV broadcasting services: A sur-
vey on mulsemedia quality of experience,” in Proc. IEEE Int. Symp.
Broadband Multimedia Syst. Broadcast., 2017, pp. 1-7.

L. Atzori, D. D. Giusto, and M. Murroni, “Performance analysis of frac-
tal modulation transmission over fast-fading wireless channels,” IEEE
Trans. Broadcast., vol. 48, no. 2, pp. 103-110, Jun. 2002.

Z. Luo, L. Song, S. Zheng, and N. Ling, “H.264/advanced video con-
trol perceptual optimization coding based on JND-directed coefficient
suppression,” I[EEE Trans. Circuits Syst. Video Technol., vol. 23, no. 6,
pp. 935-948, Jun. 2013.

[2]

[3]



516

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

J. Zou et al., “Prioritized flow optimization with multi-path and network
coding based routing for scalable multirate multicasting,” IEEE Trans.
Circuits Syst. Video Technol., vol. 21, no. 3, pp. 259-273, Mar. 2011.
X. Liu et al., “Sparsity-based image error concealment via adaptive dual
dictionary learning and regularization,” IEEE Trans. Image Process.,
vol. 26, no. 2, pp. 782796, Feb. 2017.

X. Liu, D. Zhao, J. Zhou, W. Gao, and H. Sun, “Image interpolation via
graph-based Bayesian label propagation,” IEEE Trans. Image Process.,
vol. 23, no. 3, pp. 1084-1096, Mar. 2014.

J. Zhou, O. C. Au, G. Zhai, Y. Y. Tang, and X. Liu, “Scalable
compression of stream cipher encrypted images through context-
adaptive sampling,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1857-1868, Nov. 2014.

K. Gu et al., “Analysis of distortion distribution for pooling in image
quality prediction,” IEEE Trans. Broadcast., vol. 62, no. 2, pp. 446456,
Jun. 2016.

M. Liu, K. Gu, G. Zhai, P. Le Callet, and W. Zhang, “Perceptual reduced-
reference visual quality assessment for contrast alteration,” /EEE Trans.
Broadcast., vol. 63, no. 1, pp. 71-81, Mar. 2017.

L. A. da Silva Cruz, M. Cordina, C. J. Debono, and P. A. A. Assuncao,
“Quality monitor for 3-D video over hybrid broadcast networks,” IEEE
Trans. Broadcast., vol. 62, no. 4, pp. 785-799, Dec. 2016.

Q. Wu, H. Li, E. Meng, and K. N. Ngan, “Toward a blind quality metric
for temporally distorted streaming video,” IEEE Trans. Broadcast., to
be published.

R. Sotelo, J. Joskowicz, M. Anedda, M. Murroni, and D. D. Giusto,
“Subjective video quality assessments for 4K UHDTV,” in Proc. [EEE
Int. Symp. Broadband Multimedia Syst. Broadcast., 2017, pp. 1-6.

L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, “The SJTU 4K
video sequence dataset,” in Proc. Int. Workshop Qual. Multimedia Exp.,
Klagenfurt, Austria, 2013, pp. 34-35.

K. Gu, L. Li, H. Lu, X. Min, and W. Lin, “A fast reliable image qual-
ity predictor by fusing micro- and macro-structures,” /EEE Trans. Ind.
Electron., vol. 64, no. 5, pp. 3903-3912, May 2017.

A. K. Moorthy and A. C. Bovik, “Blind image quality assessment:
From natural scene statistics to perceptual quality,” IEEE Trans. Image
Process., vol. 20, no. 12, pp. 3350-3364, Dec. 2011.

M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality assess-
ment: A natural scene statistics approach in the DCT domain,” /EEE
Trans. Image Process., vol. 21, no. 8, pp. 3339-3352, Aug. 2012.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695-4708, Dec. 2012.

K. Gu, G. Zhai, X. Yang, and W. Zhang, “Using free energy principle
for blind image quality assessment,” IEEE Trans. Multimedia, vol. 17,
no. 1, pp. 50-63, Jan. 2015.

L. Zhang, L. Zhang, and A. C. Bovik, “A feature-enriched completely
blind image quality evaluator,” IEEE Trans. Image Process., vol. 24,
no. 8, pp. 2579-2591, Aug. 2015.

X. Min et al., “Blind quality assessment based on pseudo reference
image,” IEEE Trans. Multimedia, to be published.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. IEEE Asilomar
Conf. Signal, Syst., Comput., vol. 2. Pacific Grove, CA, USA, 2003,
pp. 1398-1402.

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430-444, Feb. 2006.
A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based
on gradient similarity,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1500-1512, Apr. 2012.

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similar-
ity index for image quality assessment,” IEEE Trans. Image Process.,
vol. 20, no. 8, pp. 2378-2386, Aug. 2011.

W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684-695, Feb. 2014.
N. Ponomarenko et al., “Image database TID2013: Peculiarities, results
and perspectives,” Signal Process. Image Commun., vol. 30, pp. 57-77,
Jan. 2015.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209-212, Mar. 2013.

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

IEEE TRANSACTIONS ON BROADCASTING, VOL. 64, NO. 2, JUNE 2018

P. Ye, J. Kumar, L. Kang, and D. Doermann, “Unsupervised feature
learning framework for no-reference image quality assessment,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Providence, RI, USA, 2012,
pp. 1098-1105.

J. Xu et al., “Blind image quality assessment based on high order
statistics aggregation,” IEEE Trans. Image Process., vol. 25, no. 9,
pp. 44444457, Sep. 2016.

K. Ma, W. Liu, T. Liu, Z. Wang, and D. Tao, “dipIQ: Blind image quality
assessment by learning-to-rank discriminable image pairs,” IEEE Trans.
Image Process., vol. 26, no. 8, pp. 3951-3964, Aug. 2017.

G. Zhai, X. Wu, X. Yang, W. Lin, and W. Zhang, “A psychovisual quality
metric in free-energy principle,” IEEE Trans. Image Process., vol. 21,
no. 1, pp. 41-52, Jan. 2012.

Q. Wu, Z. Wang, and H. Li, “A highly efficient method for blind
image quality assessment,” in Proc. IEEE Int. Conf. Image Process.,
Quebec City, QC, Canada, 2015, pp. 339-343.

Q. Li, W. Lin, J. Xu, and Y. Fang, “Blind image quality assessment using
statistical structural and luminance features,” IEEE Trans. Multimedia,
vol. 18, no. 12, pp. 2457-2469, Dec. 2016.

F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas, “The blur effect:
Perception and estimation with a new no-reference perceptual blur
metric,” in Proc. SPIE, vol. 6492, Feb. 2007, pp. 1-11.

C. Li, W. Yuan, A. C. Bovik, and X. Wu, “No-reference blur index using
blur comparisons,” IET Electron. Lett., vol. 47, no. 17, pp. 962-963,
Aug. 2011.

X. Min et al., “Blind quality assessment of compressed images via
pseudo structural similarity,” in Proc. IEEE Int. Conf. Multimedia Expo,
Seattle, WA, USA, 2016, pp. 1-6.

T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987,
Jul. 2002.

X. Min, G. Zhai, Z. Gao, and K. Gu, “Visual attention data for image
quality assessment databases,” in Proc. IEEE Int. Symp. Circuits Syst.,
Melbourne, VIC, Australia, 2014, pp. §94-897.

X. Min, G. Zhai, K. Gu, and X. Yang, “Fixation prediction through
multimodal analysis,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 13, no. 1, pp. 1-23, 2017.

X. Min et al., “Visual attention analysis and prediction on human faces,”
Inf. Sci., vol. 420, pp. 417-430, Dec. 2017.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
X. Min et al., “Unified blind quality assessment of compressed natu-
ral, graphic, and screen content images,” IEEE Trans. Image Process.,
vol. 26, no. 11, pp. 5462-5474, Nov. 2017.

X. Min, K. Gu, G. Zhai, M. Hu, and X. Yang, “Saliency-induced
reduced-reference quality index for natural scene and screen content
images,” Signal Process., vol. 145, pp. 127-136, Apr. 2018.

K. Gu et al., “Evaluating quality of screen content images via structural
variation analysis,” IEEE Trans. Vis. Comput. Graphics, to be published.
H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik. LIVE Image
Quality Assessment Database Release 2. Accessed: Mar. 22, 2014.
[Online]. Available: http://live.ece.utexas.edu/research/quality

E. C. Larson and D. M. Chandler, “Most apparent distortion: Full-
reference image quality assessment and the role of strategy,” J. Electron.
Imag., vol. 19, no. 1, 2010, Art. no. 011006.

H. Yang, Y. Fang, and W. Lin, “Perceptual quality assessment of
screen content images,” IEEE Trans. Image Process., vol. 24, no. 11,
pp. 4408-4421, Nov. 2015.

Xiongkuo Min received the B.E. degree from
Wuhan University, Wuhan, China, in 2013. He is
currently pursuing the Ph.D. degree with the Institute
of Image Communication and Network Engineering,
Shanghai Jiao Tong University, Shanghai, China.
From 2016 to 2017, he was a Visiting Student
with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada. His
research interests include image quality assessment,
visual attention modeling, and perceptual signal pro-
cessing. He was a recipient of the Best Student Paper
Award of ICME 2016.



MIN et al.: BLIND IMAGE QUALITY ESTIMATION VIA DISTORTION AGGRAVATION 517

Guangtao Zhai (M’10) received the B.E. and
M.E. degrees from Shandong University, Shandong,
China, in 2001 and 2004, respectively, and the
Ph.D. degree from Shanghai Jiao Tong University,
Shanghai, China, in 2009, where he is currently
a Research Professor with the Institute of Image
Communication and Information Processing. From
2008 to 2009, he was a Visiting Student with the
Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada, where
he was a Post-Doctoral Fellow from 2010 to 2012.
From 2012 to 2013, he was a Humboldt Research Fellow with the Institute
of Multimedia Communication and Signal Processing, Friedrich Alexander
University of Erlangen-Nuremberg, Germany. His research interests include
multimedia signal processing and perceptual signal processing. He was a
recipient of the National Excellent Ph.D. Thesis Award from the Ministry
of Education of China in 2012.

Ke Gu received the B.S. and Ph.D. degrees in
electronic engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2009 and 2015,
respectively. His research interests include quality
assessment, contrast enhancement, visual saliency
detection, and air quality prediction. He was a
recipient of the Best Paper Award at the IEEE
International Conference on Multimedia and Expo
in 2016, and the Excellent Ph.D. Thesis Award from
the Chinese Institute of Electronics in 2016. He
is an Associate Editor for the IEEE ACCESS, and
a Reviewer for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS, the IEEE TRANSACTIONS ON IMAGE PROCESSING,
the IEEE TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON MULTIMEDIA,
the TEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY, the IEEE TRANSACTIONS ON BROADCASTING, J-STSP,
SPL, ACCESS, Information Sciences, Neurocomputing, SPIC, JVCI, DSP,
MTAP, and ELL. He has reviewed over 50 journal papers each year. He
is a leading Special Session Organizer in VCIP 2016 and ICIP 2017.

Yutao Liu received the B.S. and M.S. degrees
in computer science from the Harbin Institute of
Technology, Harbin, China, in 2011 and 2013,
respectively, where he is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology. From 2014 to 2016, he was a
Research Assistant with the Institute of Image
Communication and Network Engineering, Shanghai
Jiao Tong University, Shanghai, China. His cur-
rent research interests include image processing and
image quality assessment.

Xiaokang Yang (M’00-SM’04) received the B.S.
degree from Xiamen University, Xiamen, China, in
1994, the M.S. degree from the Chinese Academy
of Sciences, Shanghai, China, in 1997, and the
Ph.D. degree from Shanghai Jiao Tong University,
Shanghai, in 2000.

He is currently a Distinguished Professor with
the School of Electronic Information and Electrical
Engineering, and the Deputy Director of the
Institute of Image Communication and Information
Processing, Shanghai Jiao Tong University. From
2000 to 2002, he was a Research Fellow with the Centre for Signal Processing,
Nanyang Technological University, Singapore. From 2002 to 2004, he was a
Research Scientist with the Institute for Infocomm Research, Singapore. From
2007 to 2008, he was an Alexander von Humboldt Research Fellow with the
Institute for Computer Science, University of Freiburg, Freiburg im Breisgau,
Germany. He has published over 200 refereed papers, and holds 60 patents.
His current research interests include image processing and communication,
computer vision, and machine learning.

Prof. Yang is an Associate Editor of the IEEE TRANSACTIONS ON
MULTIMEDIA and a Senior Associate Editor of the IEEE Signal Processing
Letters. He was a Series Editor of Springer CCIS, and an Editorial
Board Member of Digital Signal Processing. He is also the Chair of the
Multimedia Big Data Interest Group of MMTC Technical Committee, IEEE
Communication Society. He is a member of the Asia-Pacific Signal and
Information Processing Association, the VSPC Technical Committee of the
IEEE Circuits and Systems Society, and the MMSP Technical Committee of
the IEEE Signal Processing Society.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


